Casualty Actuarial Society Dynamic Financial Analysis Seminar

LIABILITY DYNAMICS

Stephen Mildenhall CNA Re July 13, 1998

Objectives

- Illustrate some liability modeling concepts
 - General comments
 - Efficient use of simulation
 - How to model correlation
 - Adding distributions using Fourier transforms
 - Case Study to show practical applications
- Emphasis on practice rather than theory
 - Actuaries are the experts on liability dynamics
 - Knowledge is not embodied in general theories
 - Techniques you can try for yourselves

- Importance of liability dynamics in DFA models
 - Underwriting liabilities central to an insurance company; DFA models should reflect this
 - DFA models should ensure balance between asset and liability modeling sophistication
 - Asset models can be very sophisticated
 - Don't want to change investment strategy based on half-baked liability model
 - Need clear idea of what you are trying to accomplish with DFA before building model

- Losses or Loss Ratios?
 - Must model two of premium, losses, and loss ratio
 - Ratios harder to model than components
 - Ratio of independent normals is Cauchy
 - Model premium and losses separately and compute loss ratio
 - Allows modeler to focus on separate drivers
 - Liability: inflation, econometric measures, gas prices
 - Premiums: pricing cycle, industry results, cat experience
 - Explicitly builds in structural correlation between lines driven by pricing cycles

- Aggregate Loss Distributions
 - Determined by frequency and severity components
 - Tail of aggregate determined by thicker of the tails of frequency and severity components
 - Frequency distribution is key for coverages with policy limits (most liability coverages)
 - Cat losses can be regarded as driven by either component
 - Model on a per occurrence basis: severity component very thick tailed, frequency thin tailed
 - Model on a per risk basis: severity component thin tailed, frequency thick tailed
 - Focus on the important distribution!

- Loss development: resolution of uncertainty
 - Similar to modeling term structure of interest rates
 - Emergence and development of losses
 - Correlation between development between lines and within a line between calendar years
 - Very complex problem
 - Opportunity to use financial market's techniques
- Serial correlation
 - Within a line (1995 results to 1996, 1996 to 1997 etc.)
 - Between lines
 - Calendar versus accident year viewpoints

Efficient Use of Simulation

- Monte Carlo simulation essential tool for integrating functions over complex regions in many dimensions
- Typically not useful for problems only involving one variable
 - More efficient routines available for computing onedimensional integrals
- Not an efficient way to add up, or convolve, independent distributions
 - See below for alternative approach

Efficient Use of Simulation

- Example
 - Compute expected claim severity excess of \$100,000 from lognormal severity distribution with mean \$30,000 and CV = 3.0
 - Comparison of six methods

Method	Estimate	% Error
100 random points	N/A	Too high
100 random points xs \$100,000	N/A	> 25% common
99 percentiles xs \$100,000	\$7,713	-9.8%
Newton-Coates using 99 points xs \$100,000	\$8,199	-4.1%
Gauss-Legendre, 10 points xs \$100,000	\$8,173	-4.4%
Gauss-Legendre, 20 points xs \$100,000	\$8,403	-1.8%
Exact solution from analytic formula	\$8,553	

Efficient Use of Simulation

- Comparison of Methods
 - Not selecting xs \$100,000 throws away 94% of points
 - Newton-Coates is special weighting of percentiles
 - Gauss-Legendre is clever weighting of cleverly selected points
 - See 3C text for more details on Newton-Coates and Gauss-Legendre
 - When using numerical methods check hypotheses hold
 - For layer \$900,000 excess of \$100,000 Newton-Coates outperforms Gauss-Legendre because integrand is not differentiable near top limit
- Summary
 - Consider numerical integration techniques before simulation, especially for one dimensional problems
 - Concentrate simulated points in area of interest

• S. Wang, Aggregation of Correlated Risk Portfolios: Models and Algorithms

– http://www.casact.org/cotor/wang.htm

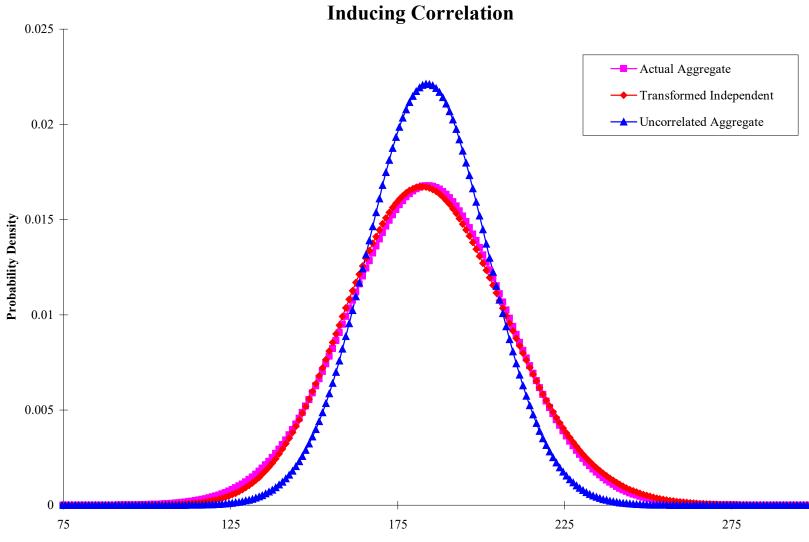
- Measures of correlation
 - Pearson's correlation coefficient
 - Usual notion of correlation coefficient, computed as covariance divided by product of standard deviations
 - Most appropriate for normally distributed data
 - Spearman's rank correlation coefficient
 - Correlation between ranks (order of data)
 - More robust than Pearson's correlation coefficient
 - Kendall's tau

- Problems with modeling correlation
 - Determining correlation
 - Typically data intensive, but companies only have a few data points available
 - No need to model guessed correlation with high precision
 - Partial correlation
 - Small cats uncorrelated but large cats correlated
 - Rank correlation and Kendall's tau less sensitive to partial correlation

- Problems with modeling correlation
 - Hard to simulate from multivariate distributions
 - E.g. Loss and ALAE
 - No analog of using $F^{-1}(u)$ where u is a uniform variable
 - Can simulate from multivariate normal distribution
 - DFA applications require samples from multivariate distribution
 - Sample essential for loss discounting, applying reinsurance structures with sub-limits, and other applications
 - Samples needed for Monte Carlo simulation

- What is positive correlation?
 - The tendency for above average observations to be associated with other above average observations
 - Can simulate this effect using "shuffles" of marginals
 - Vitale's Theorem
 - Any multivariate distribution with continuous marginals can be approximated arbitrarily closely by a shuffle
 - Iman and Conover describe an easy-to-implement method for computing the correct shuffle
 - A Distribution-Free Approach to Inducing Rank Correlation Among Input Variables, Communications in Statistical Simulation & Computation (1982) 11(3), p. 311-334

- Advantages of Iman-Conover method
 - Easy to code
 - Quick to apply
 - Reproduces input marginal distributions
 - Easy to apply different correlation structures to the same input marginal distributions for sensitivity testing


- How Iman-Conover works
 - Inputs: marginal distributions and correlation matrix
 - Use multivariate normal distribution to get a sample of the required size with the correct correlation
 - Introduction to Stochastic Simulation, 4B syllabus
 - Use Choleski decomposition of correlation matrix
 - Reorder (shuffle) input marginals to have the same ranks as the normal sample
 - Implies sample has same rank correlation as the normal sample
 - Since rank correlation and Pearson correlation are typically close, resulting sample has the desired structure
 - Similar to normal copula method

- Using Fast Fourier Transform to add independent loss distributions
 - Method
 - (1) Discretize each distribution
 - (2) Take FFT of each discrete distribution
 - (3) Form componetwise product of FFTs
 - (4) Take inverse FFT to get discretization of aggregate
 - FFT available in SAS, Excel, MATLAB, and others
 - Example on next slide adds independent N(70,100) and N(100,225), and compares results to N(170,325)
 - 512 equally sized buckets starting at 0 (up to 0.5), 0.5 to 1.5,...
 - Maximum percentage error in density function is 0.3%
 - Uses Excel

•	Bucket	N(70;100)	N(100;225)	FFT N(70;100)	FFT N(100;225)	Product of FFTs	Inverse FFT	N(170;325)	% Error
\int	< 0.5	1.8380E-12	1.6497E-11	1.00	1.00	1.00	0.0000E+00	0.0000E+00	0.00%
/	0.5-1.5	1.8767E-12	9.3621E-12	0.648-0.752i	0.331-0.926i	-0.481-0.849i	0.0000E+00	0.0000E+00	0.00%
	1.5-2.5	3.7196E-12	1.4499E-11	-0.142-0.960i	-0.722-0.593i	-0.466+0.778i	0.0000E+00	0.0000E+00	0.00%
		• • • • • • • • • • • • • • •	•••••	••••	• • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	
	61.5-62.5	2.8965E-02	1.0756E-03	0.000+0.000i	0.000-0.000i	0.000-0.000i	3.5994E-10	3.5895E-10	-0.28%
	62.5-63.5	3.1219E-02	1.2706E-03	0.000-0.000i	0.000-0.000i	0.000-0.000i	5.0095E-10	4.9956E-10	-0.28%
	63.5-64.5	3.3314E-02	1.4943E-03	0.000-0.000i	0.000-0.000i	0.000+0.000i	6.9506E-10	6.9313E-10	-0.28%
	64.5-65.5	3.5196E-02	1.7496E-03	0.000+0.000i	0.000+0.000i	0.000+0.000i	9.6141E-10	9.5874E-10	-0.28%
	65.5-66.5	3.6814E-02	2.0394E-03	0.000-0.000i	0.000+0.000i	0.000+0.000i	1.3257E-09	1.3221E-09	-0.28%
	66.5-67.5	3.8124E-02	2.3666E-03	0.000-0.000i	0.000-0.000i	0.000-0.000i	1.8225E-09	1.8175E-09	-0.28%
	67.5-68.5	3.9089E-02	2.7343E-03	0.000-0.000i	0.000-0.000i	0.000+0.000i	2.4977E-09	2.4909E-09	-0.27%
	68.5-69.5	3.9679E-02	3.1450E-03	0.000-0.000i	0.000-0.000i	0.000+0.000i	3.4126E-09	3.4034E-09	-0.27%
	69.5-70.5	3.9878E-02	3.6014E-03	0.000+0.000i	0.000+0.000i	0.000-0.000i	4.6482E-09	4.6358E-09	-0.27%
	70.5-71.5	3.9679E-02	4.1057E-03	0.000+0.000i	0.000+0.000i	0.000+0.000i	6.3118E-09	6.2952E-09	-0.26%
	71.5-72.5	3.9089E-02	4.6600E-03	0.000+0.000i	0.000-0.000i	0.000+0.000i	8.5445E-09	8.5222E-09	-0.26%
	72.5-73.5	3.8124E-02	5.2655E-03	0.000+0.000i	0.000-0.000i	0.000-0.000i	1.1531E-08	1.1502E-08	-0.26%
	73.5-74.5	3.6814E-02	5.9234E-03	0.000-0.000i	0.000-0.000i	0.000+0.000i	1.5515E-08	1.5475E-08	-0.26%
	74.5-75.5	3.5196E-02	6.6340E-03	0.000-0.000i	0.000+0.000i	0.000+0.000i	2.0810E-08	2.0758E-08	-0.25%
		• • • • • • • • • • • • • • • •	•••••	••••	• • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	
	127.5-128.5	2.0098E-09	4.6600E-03	0.000-0.000i	0.000-0.000i	0.000-0.000i	1.4684E-03	1.4676E-03	-0.06%
	128.5-129.5	1.1204E-09	4.1057E-03	0.000+0.000i	0.000-0.000i	0.000+0.000i	1.6683E-03	1.6674E-03	-0.05%
	129.5-130.5	6.1844E-10	3.6014E-03	0.000+0.000i	0.000-0.000i	0.000-0.000i	1.8896E-03	1.8887E-03	-0.05%
	130.5-131.5	3.3796E-10	3.1450E-03	0.000+0.000i	0.000+0.000i	0.000-0.000i	2.1337E-03	2.1327E-03	-0.05%
	131.5-132.5	1.8286E-10	2.7343E-03	0.000-0.000i	0.000+0.000i	0.000+0.000i	2.4019E-03	2.4008E-03	-0.04%
	132.5-133.5	9.7952E-11	2.3666E-03	0.000-0.000i	0.000+0.000i	0.000-0.000i	2.6955E-03	2.6944E-03	-0.04%
	133.5-134.5	5.1949E-11	2.0394E-03	0.000-0.000i	0.000-0.000i	0.000-0.000i	3.0157E-03	3.0145E-03	-0.04%
	134.5-135.5	2.7278E-11	1.7496E-03	0.000-0.000i	0.000-0.000i	0.000+0.000i	3.3636E-03	3.3624E-03	-0.04%
	135.5-136.5	1.4181E-11	1.4943E-03	0.000+0.000i	0.000+0.000i	0.000-0.000i	3.7400E-03	3.7388E-03	-0.03%
	136.5-137.5	7.2992E-12	1.2706E-03	0.000+0.000i	0.000+0.000i	0.000-0.000i	4.1459E-03	4.1447E-03	-0.03%
	137.5-138.5	3.7196E-12	1.0756E-03	0.000+0.000i	0.000+0.000i	0.000+0.000i	4.5817E-03	4.5805E-03	-0.03%
		• • • • • • • • • • • • • •			• • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •	•••••	i
	509.5-510.5	0.0000E+00	0.0000E+00	-0.142+0.960i	-0.722+0.593i	-0.466-0.778i	0.0000E+00	0.0000E+00	0.00%
	510.5 +	0.0000E+00	0.0000E+00	0.648+0.752i	0.331+0.926i	-0.481+0.849i	0.0000E+00	0.0000E+00	0.00%

512 rows

- Using fudge factor to approximate correlation in aggregates
 - Correlation increases variance of sum
 - Can compute variance given marginals and covariance matrix
 - Increase variance of independent aggregate to desired quantity using Wang's proportional hazard transform, by adding noise, or some other method
 - Shift resulting distribution to keep mean unchanged
- Example, continued
 - If correlation is 0.8, aggregate is N(170,565)
 - Approximation, Wang's rho = 2.3278, shown below

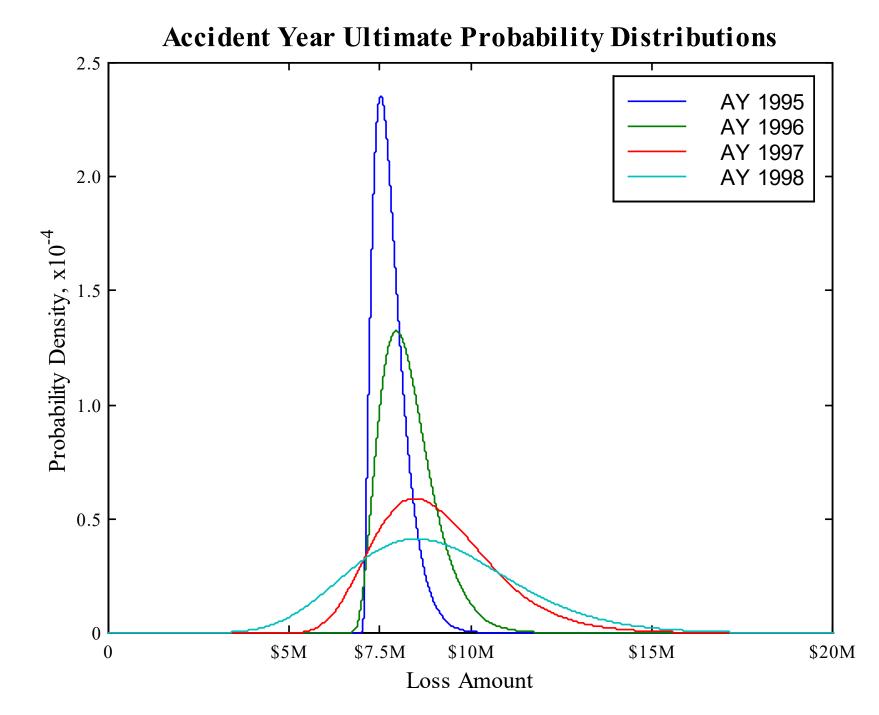
Loss Amount

- Problem
 - Compute capital needed for various levels of one year expected policyholder deficit (EPD) and probability of ruin
- Assumptions
 - Monoline auto liability (BI and PD) company
 - All losses at ultimate after four years
 - Loss trend 5% with matching rate increases
 - Ultimates booked at best estimates
 - Anything else required to keep things simple
 - Expenses paid during year; premiums paid in full during year; no uncollected premium; assets all in cash; ...

• Historical results and AY 1998 plan at 12/97

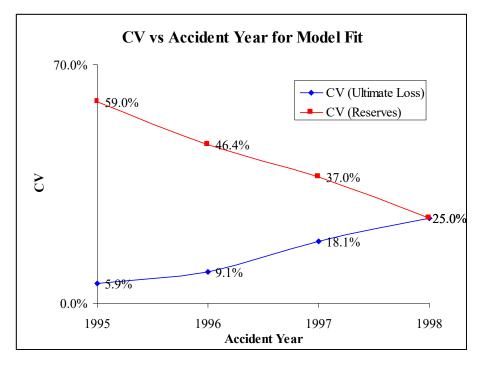
			Estimated	Estimated
Accident	Earned	Paid Loss	Ult Loss	Ult LR
Year	Premium	at 12/97	at 12/97	at 12/97
1995	11,301,129	7,013,848	7,792,385	69.0%
1996	11,729,399	5,995,292	8,296,654	70.7%
1997	12,363,136	3,353,340	9,087,142	73.5%
1998	12,967,731	0	9,097,549	70.2%

Accident	Paid During	Paid Loss	Est Ult Loss			
Year	1998	at 12/98	at 12/98	Alpha	Beta	Shift
1995	778,537	7,792,385	7,792,385	2.8736	270,927.45	7,013,848
1996	1,472,444	7,467,736	8,296,654	4.6477	351,977.32	6,660,769
1997	3,213,170	6,566,510	9,087,142	7.3058	608,637.40	4,640,558
1998	3,357,181	3,357,181	9,097,549	* * *		


- EPD calculation requires distribution of calendar year 1998 incurred loss
- For AY95-97 derive from amounts paid during 98
 - Assume LDFs do not change from current estimate

$$\Delta Ult = LDF_{98}(Paid_{in 1998} - (link_{98} - 1)Paid_{prior to 1998})$$

Expected value
Random component


• For AY98 model ultimate using an aggregate loss distribution

- Liability model for AY 1997 and prior
 - Used annual statement extract from Private Passenger
 Auto Liability to generate sample of 344 four-year paid loss triangles
 - Fitted gamma distribution to one-year incremental paid losses
 - New ultimate has shifted gamma distribution, parameters given on page 11
 - Used generalized linear model theory to determine maximum likelihood parameters
 - CV of *reserves* increased with age
 - CV estimates used here exactly as produced by model

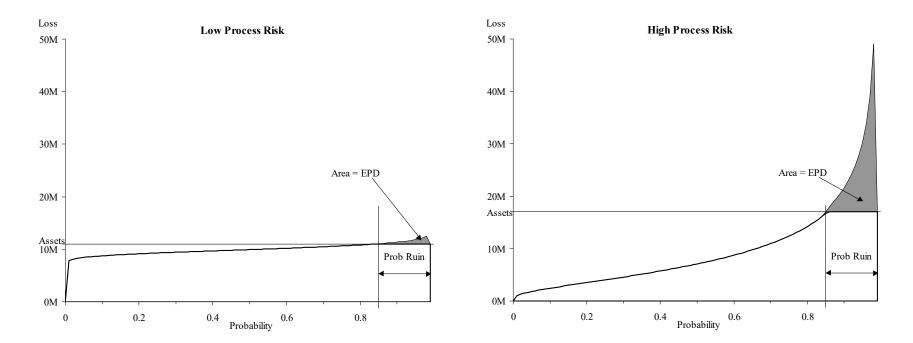
- Aggregate liability model for AY 1998
 - Property Damage Severity: lognormal
 - Bodily Injury Severity: ISO Five Parameter Pareto
 - Total Severity: 30% of PD claims lead to BI claims
 - Used FFT to generate total severity
 - Mean severity \$2,806 (CV = 1.6, skewness = 2.1)
 - Negative binomial claim count
 - Mean 3,242 (CV=0.25)
 - Computed aggregate using FFT
 - Mean = 9.098M (CV = 0.25, skewness = 0.50)
- Next slide shows resulting marginal distributions

- Comments
 - Model agrees with *a priori* expectations
 - Single company may not want to base reserve development pattern on other companies
 - Graph opposite shows CV to total loss and reserves
 - See forthcoming Taylor paper for other approaches

CV(Ultimate Loss) = SD(Reserves)/E(Ultimate Loss)

CV(Reserves) = SD(Reserves)/E(Reserves)

E(Ultimate Loss) > E(Reserves)


- Correlation
 - Annual Statement data suggested there was a calendar year correlation in the incremental paid amounts
 - Higher than expected paid for one AY in a CY increases likelihood of higher than expected amount for other AYs
 - Some data problems
 - Model with and without correlation to assess impact

- EPD calculation
 - 10,000 "0.01%ile" points from each marginal distribution shuffled using Iman-Conover
 - With no correlation could also use FFT to convolve marginal distributions directly
 - Sensitivity testing indicates 10,000 points is just about enough
 - EPD ratios computed to total ultimate losses
 - Exhibits also show premium to surplus (P:S) and liability to surplus ratio (L:S) for added perspective
 - Coded in MATLAB
 - Computation took 90 seconds on Pentium 266 P/C

DFA Liability Case Study: Results

	No correlation			With Correlation				
EPD Level	Capital	P:S	L:S	Capital	P:S	L:S		
1.0%	2.6M	5.0:1	6.9:1	3.7M	3.6:1	4.9:1		
0.5%	3.9M	3.4:1	4.6:1	5.1M	2.5:1	3.4:1		
0.1%	5.9M	2.2:1	3.1:1	8.2M	1.6:1	2.2:1		
	No correlation				With Correlation			
Prob Ruin	Capital	P:S	L:S	Capital	P:S	L:S		
10.0%	3.9M	3.4:1	4.6:1	4.7M	2.8:1	3.8:1		
1.0%	7.8M	1.7:1	2.3:1	9.4M	1.4:1	1.9:1		
0.1%	11.0M	1.2:1	1.6:1	13.0M	1.0:1	1.4:1		

- Comments
 - Probability of ruin, not EPD, drives capital requirements for low process risk lines

- Comments
 - Using outstanding liabilities as denominator doubles indicated EPD ratios
 - Paper by Phillips estimates industry EPD at 0.15%
 - http://rmictr.gsu.edu/ctr/working.htm, #95.2
 - Correlation used following matrix

AY 1995	1.0	0.3	0.2	0.1
AY 1996	0.3	1.0	0.3	0.2
AY 1997	0.2	0.3	1.0	0.3
AY 1998	0.1	0.2	0.3	1.0

Model shows significant impact of correlation on required capital

Summary

- Use simulation carefully
 - Alternative methods of numerical integration
 - Concentrate simulated points in area of interest
- Iman-Conover provides powerful method for modeling correlation
- Use Fast Fourier Transforms to add independent random variables
- Consider annual statement data and use of statistical models to help calibrate DFA